In functional analysis and related areas of mathematics, a BK-space or Banach coordinate space is a sequence space endowed with a suitable norm to turn it into a Banach space. All BK-spaces are normable FK-spaces.

Examples

The space of convergent sequences c , {\displaystyle c,} the space of vanishing sequences c 0 , {\displaystyle c_{0},} and the space of bounded sequences {\displaystyle \ell ^{\infty }} under the supremum norm . {\displaystyle \|\cdot \|_{\infty }.}

The space of absolutely p-summable sequences p {\displaystyle \ell ^{p}} with p 1 {\displaystyle p\geq 1} and the norm p . {\displaystyle \|\cdot \|_{p}.}

See also

  • FK-AK space
  • FK-space – Sequence space that is Fréchet
  • Normed space – Vector space on which a distance is definedPages displaying short descriptions of redirect targets
  • Sequence space – Vector space of infinite sequences

References


BK Surface Technology Gmbh

Neuigkeiten aus dem Unternehmen

Bk Bilder Durchsuchen 11,670 Archivfotos, und Videos

Neuigkeiten aus dem Unternehmen